Cerebral protection device in TAVR, based on pre cta brain will reduce stroke events

Dr AM Thirugnanam,

Senior Interventional Cardiologist, Ipcard Cardiac Care,

Hyderabad, India

TAVI 58-100% cas 20-70%

Cardiac Cath $3-18^{\%}$

CABG 18-42% AVR

 $48^{0/0}$

New Ischemic Lesions are Present in a Substantial Number of Patients Undergoing Cardiovascular Interventions with Diffusion weighted (DWI) MRI Estimates: 600,000 pts/year

Clinical Consequences and Brain Injury

Gress D, J Am Coll Cardiol. 2012 Oct 23;60(17):1614-6

AF Ablation $7-42^{\%}$

Proposed Standardized Neurologic Endpoints in Cardiovascular Clinical Trials [NeuroARC]

Framework on how to <u>assess</u>, <u>measure</u> and <u>classify</u> neurologic endpoints associated with cardiovascular procedures

International Multi Stakeholder Consensus. Chairs: Baumbach, Lansky, Mack, Messé

Interventional/Structural/ CT Surgery	Neurology/Neuroradiology/ Neuropsychology/NINDS	FDA/ARC/Pathology
Andreas Baumbach	Kevin Abrams	FDA
John Forrest	Michel Bilello	Andrew Farb
David Holmes	Adam Brickman	Nicole Ibrahim
Susheel Kodali	Jeffrey Browndyke	John Laschinger
Alexandra Lansky	Karen Furie	Carlos Pena
Axel Linke	David Greer	Bram Zuckerman
Raj Makkar	Daryl Gress	Academic Research Consortium (ARC)
Jeffrey Moses	Ronald Lazar	Donald Cutlip
Cody Pietras	Steven Messé	Gerrit-Anne van Es
Jeffrey Popma	Claudia Moy	Mitch Krucoff
Bernard Prendergast	Nils Petersen	Roxana Mehran
Joachim Schofer	Ola Selnes	Pathology and Regulatory
Arie P. Kappetein	Michael Dwyer	Semih Oktay
Michael Mack	Szilard Voros	Renu Virmani
	Bart van der Worp	

NeuroloArc applies to all CV trials

Neurologic evaluation and endpoints should be tailored to the procedure/device category

CATEGORY I

Primary Procedural Safety Measure

Devices with inherent iatrogenic embolic risk

- Surgical cardiac procedures (valve replacement, CABG, dissection, aneurysm repair)
- Adjunctive pharmacology

CATEGORY II

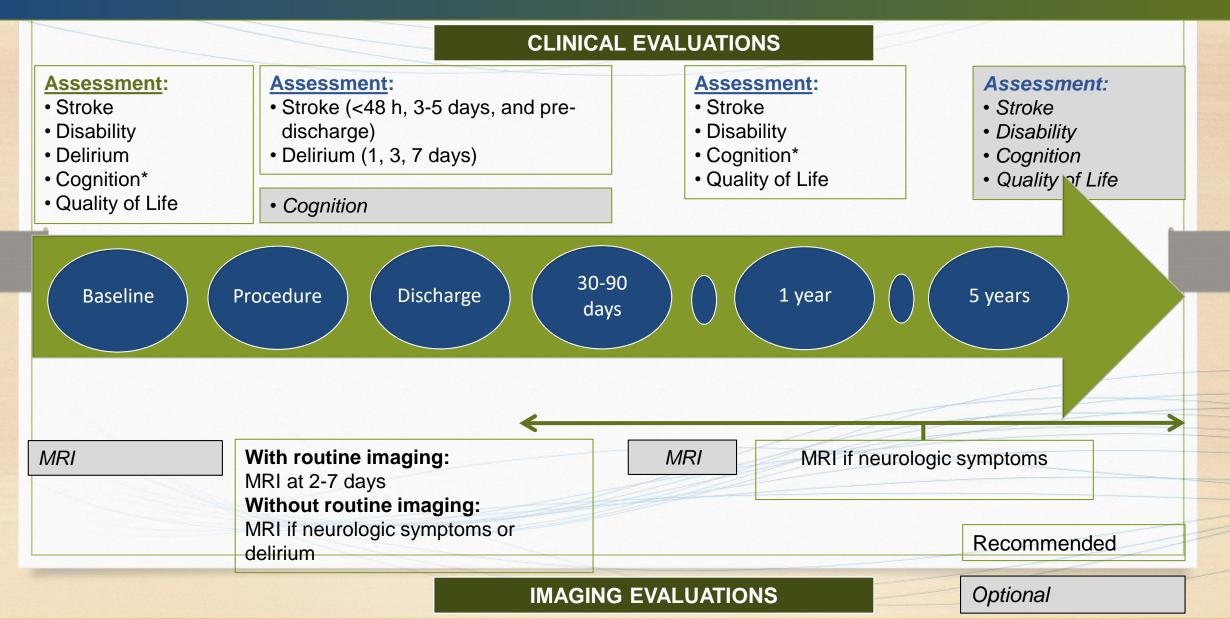
Primary Procedural Efficacy Measure

Devices designed to prevent iatrogenic or spontaneous acute neurologic injury

- Neuroprotection device
- Cerebral temperature management devices

CATEGORY III

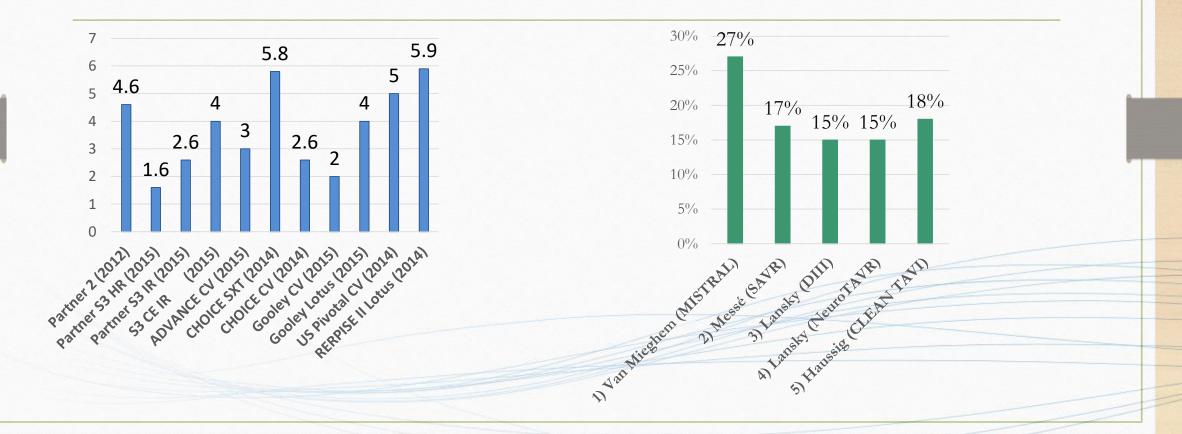
Primary Procedural Safety, Long-term Efficacy Measure


Devices with inherent iatrogenic embolic risk and designed for prevention of spontaneous longterm risk

- Atrial Fibrillation Ablation
- PFO or LAA closure devices

NeuroARC **Definitions and** Classification **Relevant to** Patients, Comprehensive , Practical

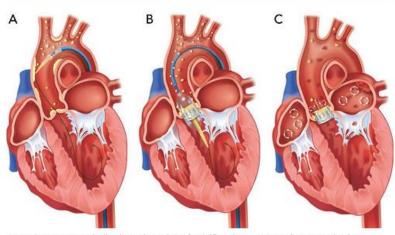
Type 1a	Ischemic Stroke	Focal or multi-focal vascular territory Symptoms ≥24 hours or until death or Symptoms <24 hours with neuroimaging confirmation
Subtype 1aH: Ischemic Stroke with Hemorrhagic conversion		Class A : Petechial Hemorrhage Class B : Confluent Hemorrhage (with space occupying effect)
Type 1.b	Intracerebral Hemorrhage	Symptoms (focal or global) caused by an intraparenchymal or intraventricular bleed
Type 1.c	Subarachnoid Hemorrage	Symptoms (focal or global) caused by a subarachnoid bleed
Type 1.d	Stroke, not otherwise specified	Symptoms ≥24 hours or until death, without imaging
Type 1.e	Hypoxic-Ischemic Injury	Global neurologic symptoms due to diffuse brain injury attributable to hypotension and/or hypoxia
Type 2: C	Covert CNS Injury (Acutely As	symptomatic brain injury detected by NeuroImaging)
Type 2.a	Covert CNS Infarction	Acutely asymptomatic focal or multi-focal ischemia, based on neuroimaging
Subtype 2aH conversion	: Ischemic Stroke with Hemorrhagic	Class A: Petechial Hemorrhage Class B: Confluent Hemorrhage (with space occupying effect)
Type 2.b	Covert Cerebral Hemorrhage	Neuroimaging or Acutely asymptomatic CNS hemorrhage on neuroimaging that i not caused by trauma
Type 3: N	Neurologic Dysfunction witho	out CNS Injury (Acutely Symptomatic)
Туре 3.а	Transient Ischemic Attack (TIA)	Symptoms <24 hours with no evidence of acute infarction by neuroimaging
Type 3.b	Delirium without CNS injury	Transient non-focal (global) neurologic signs or symptoms (variable duration) without evidence of cell death by pathology or neuroimaging


NeuroARC Recommended Assessments: Clinical, Functional, Anatomic Correlations

Stroke is common and underreported after TAVR

Reported stroke rates range from 1.6%-5.9% in TAVR trials

 Stroke rate is 15-27% after TAVR by current AHA/ASA definitions (tissue-based)

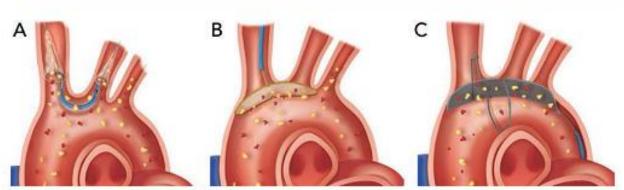

¹Van Mieghem NM, EuroIntervention. 2016;12:499. ²Messe S, Circulation. 2014;129:2253. ³Lansky AJ, Eur Heart J. 2015; 36:2070. ⁴Lansky AJ, PCR London Valves 2015, AJC 2016 (in press). ⁵Haussig S, JAMA. 2016;316:592.

Complications

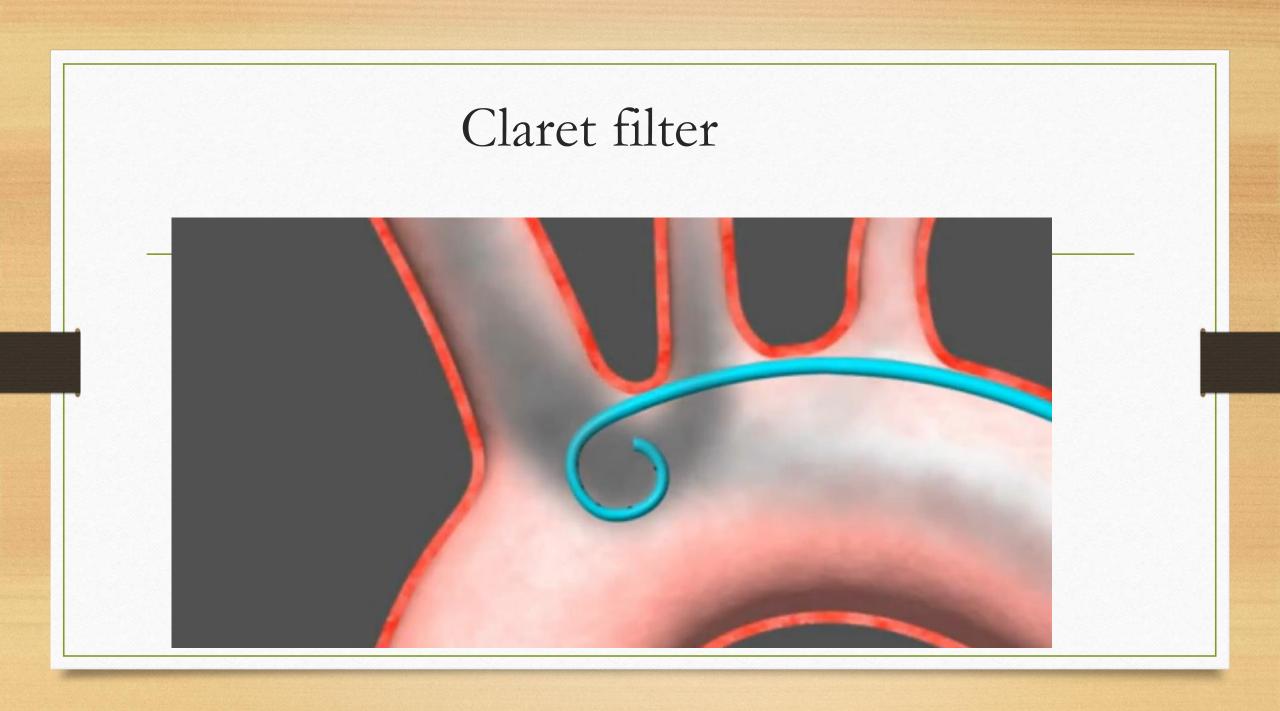
- Migration of Valve
- Access site
- AV block
- Shock
- Bleeding
- Urgent SAVR
- Coronary artery closure

Disruption of calcium, plaque and thrombus

Figure 1: Aetiology of Embolisation Secondary to Transcatheter Aortic Valve Implantation

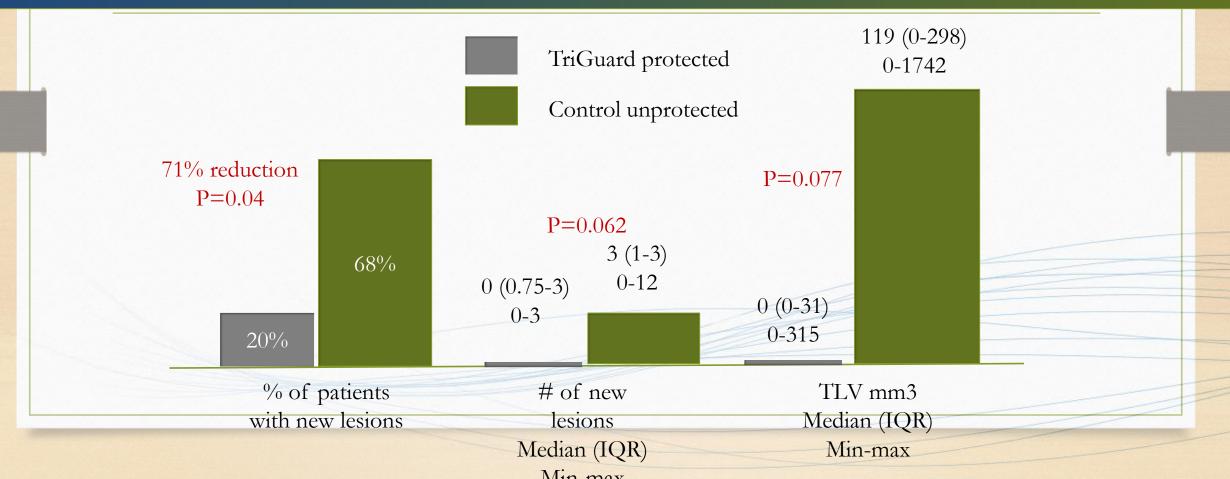

(A) and (B) Acute embolisation. Disruption of calcific/atheromatous plaques and valve/ vascular tissue associated with: (A) the passage of guide wires and large-bore catheters and during valvuloplasty and device delivery; and (B) device positioning and implantation with thrombus forming on the catheter. (C) Subacute embolisation. Persistent nidus of calcium on the native valve leaflets provides a source for further calcific embolisation: thrombus formation secondary to structural changes to native leaflets, the presence of a prosthetic device and altered rheology attributable to both the apposition of native leaflets to the aortic wall and atrial fibrillation. Adapted from Fanning et al., 2014^{ss} with permission from Wolters Kluwer Health, Inc, © 2014.

Prevent Stroke by Filter device


- Claret device
- Embrella
- Trigaurd

Various embolic protection devices

Figure 3: Embolic Protection Devices


(A) Montage[™] 2 Capture Device (Claret); (B) Embrella Embolic Deflector System (Edwards Lifesciences); and (C) TriGuard[™] Cerebral Protection Device (Keystone Heart). Adapted from Fanning et al., 2014^{ss} with permission from Wolters Kluwer Health, Inc, © 2014.

TriGuard Device for Cerebral Embolic Protection During Trans catheter Aortic Valve Replacement: A Multicenter Real-World Experience

Masieh Abawi, Ermela Yzeiraj; Adriaan Kraaijeveld,; Michiel Voskuil,; Pieter A. Doevendans; Joachim Schofer; Pieter R. Stella

51pts with TG vs 150 controls, Logistic EuroSCORE 12.6±8.3, Stroke rate was 0% in both groups

Debris during TAVR

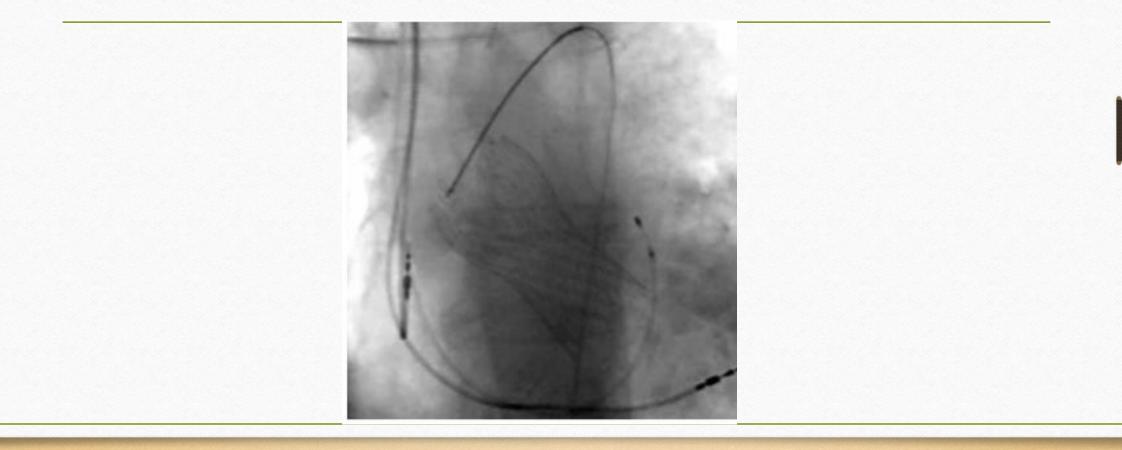
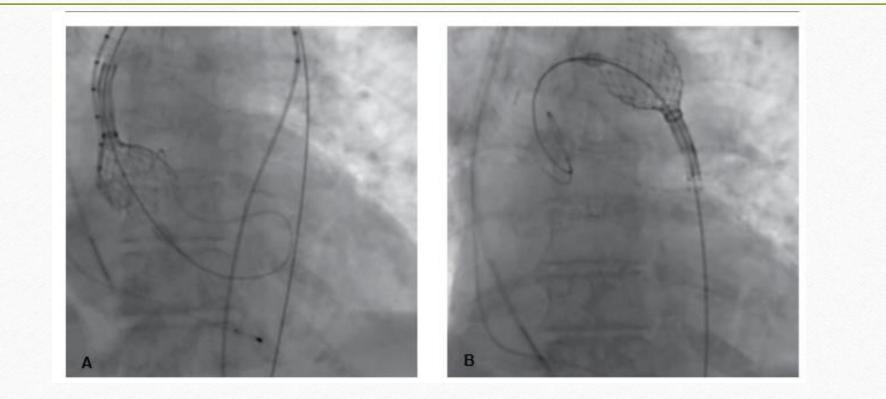
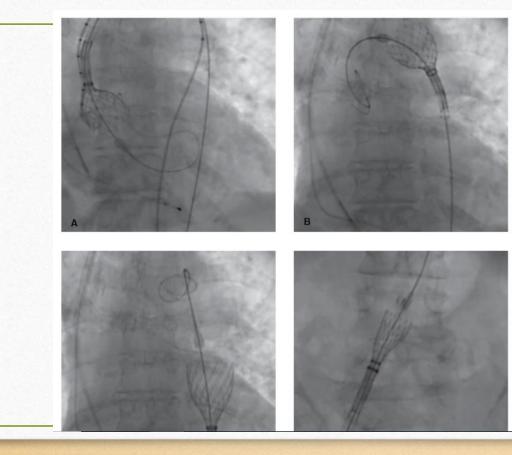


Image 1: Debris liberated during TAVI which has been captured by an


Missing of target area or Migration

- It will be major setback which can cause acute stroke.
- Shock.
- Unnecessary bleeding.
- Escalate the treatment cost.
- Increases hospital stay.


Migration of Valve into LV after deployment

Valve jumped back to descending Aorta

Gradually retrieved into working sheath

Small numbers study-27 pts

Inclusion criteria:
Normal renal function.
No previous history of stroke
EF->45%
Diabetes, Hypertension, Dyslipidemia
Only Aortic stenosis not on AR
Ages-56-90 years
Moderate to severe symptoms

Exclusion criteria

- CKD with <40ml GFR
- EF-<40%
- History of hemorrhagic stroke.
- Takayasu Arteritis.
- Severely immune compromised patients

Compared 1:1

• 14 patients were implanted TAVR under protection with pre CTA of brain and 13 patients were implanted with routine evaluation.

Primary Endpoints

• All cause mortality and stroke at 6 months and 1 year

Secondary endpoints

• Safety and acute and late stroke and neurologic deficits.

Conclusion/ Results

- CEPD significantly reduces acute and late stroke in TAVR patients at 6 months and 12 months periods.
- Devices designs and size factors also plays important role in neurological events in TAVR procedures.